Close to 9,000 satellites have been launched from over 40 countries since the Soviet Union launched the first satellite, Sputnik, on October 4, 1957. Once used in reconnaissance missions, satellites are now commonplace and vital to how we see everyday life. How do you think we enjoy live broadcasts of our favorite sporting events, get ready for rain or shine with weather forecasts or even dig into the past to see hidden ancient towns that have been buried thousands of years?
The number of satellites are increasing; an average of 990 satellites are expected to be launched every year from 2018-2028. That is a total of 9,900 by 2028, up from 2,300 satellites launched during the last decade, a four times increase, says Euroconsult in its 2019 edition of “Satellites to be Built & Launched.”
Emerging companies like SpaceX, OneWeb, Telesat, and Amazon’s Project Kuiper say they expect to launch close to 46,000 satellites in the next few years. As they, and traditional manufacturers, continue to innovate, the satellite industry and their designs have been changing as well. As a trusted supplier of sealing and polymer solutions in the space industry, Omniseal Solutions™ has also adapted their material solutions to be just as innovative in order to meet these evolving needs.
Within the satellite industry, the trend has been moving toward lower orbits and smaller satellites. In 2018, low earth satellites (LEOs) comprised about 51% of worldwide launches, and for 2019, they are estimated to increase to over 54%. These smaller, lighter weight and lower orbiting satellites offer the ability to provide business services and reliable, high-speed internet access and connectivity in even the most remote locations where laying fiber-optic cable may not be feasible. Global communications are becoming stronger with this growing technology!
Thanks to private launch vehicle services, the cost to launch a satellite has decreased dramatically in the last decade, going from more than $80,000 USD per kilogram at Space Shuttle time to approximately $1,000 USD per kilogram now. This reduced cost combined with technology that allows for launching simultaneously multiple payloads, made the current concept of small satellites and constellations both technically and commercially viable. As a result, the need for more satellites opens the market to many newcomers who are often agile start-ups competing with established satellite manufacturers, thus stimulating innovation in an otherwise very conservative landscape.
Two trends emerging from this new landscape are encouraging the move to advanced polymers.
Advanced polymers offer a high mechanical strength and low weight. In many instances, they can be a good alternative to metals. Specific benefits of advanced polymers in LEO and other satellite design include:
How are these advanced polymers specifically being used in satellite applications? The following are five emerging applications.
While advanced polymers can offer numerous advantages, metal seals may be a better alternative in some instances to address the most stringent leakage requirements. When size and weight are less of a factor, and protection of key electronic systems such as altitude or system sensors becomes the priority, metal seals may be preferred since they can meet very tight leakage requirements. Similar tight requirements can also be found inside calibration instruments as can be seen in weather satellites. Other examples in which metal seals may be used include:
View this 3D animation space video for a closer look at applications and benefits.
With Omniseal Solutions’ acquisition of companies with metal sealing expertise and technology, they can offer both polymer and metal sealing solutions, which has expanded their product portfolio as well as broadened their customer base in the space industry. They have been supporting customers for over 60 years in the space industry in missions to the moon, Mars and even further. Within Earth’s atmosphere, they are working closely with key satellite manufacturers, the space companies that are seeking to advance them, and rocket builders that launch them to help innovate satellite design and performance to advance the way we all live and communicate.
In LEO or deep space, contact us to explore how we can help you with your critical space application. Have some time for a good read? Check out our white paper on “Important & Often Overlooked Aspects For Polymer & Metal Seal Selection In Cryogenic Space Applications.”